If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23t^2-12t=0
a = 23; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·23·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*23}=\frac{0}{46} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*23}=\frac{24}{46} =12/23 $
| 3w+8=10 | | 0=400+100x | | -5z-4=-8z+8 | | 5x-2=11x-21+9x+3 | | 3x+8=6.5 | | 3d-3+d=-9+10d | | 6x-14=5x+8=3x+4 | | 7*x+38*x+-5=9*(5*x+9) | | 7x-8=11x-28=180 | | 7/2x+1/2x=4*1/2+9/2x | | 42u^2-11u=0 | | 6+8q-1=-9+6q | | 5x-2+11x-21=9x+3 | | 3(z-9)+43=-2(4z+3) | | 3(2x-3)=8x-13 | | 7x–5=16 | | 11x-28=7x-8=180 | | 3(z-9)+43=-2(42+3) | | q6+8q-1=-9+6q | | 6x-12=2(3x-12) | | 8x-77=3x-38=180 | | 4.7=1.8n+0.6N | | 16x-4=-9+6x+95 | | 8x-77=3x=38=180 | | 120=7x+50 | | 5/3=24x | | 6+8q−1=–9+6q | | 120=7x+5 | | (9x-8)=(5x-27) | | -8d-9=5-6d | | 23=5u+8 | | 3x+18=x2 |